Homework

1. (1) Find the rank of the matrices.

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$

(2)求下列矩阵的秩并判断它们是否有相同的相抵标准形.

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & -1 & 5 \\ 0 & 3 & 3 \\ 0 & 2 & 2 \end{pmatrix}$$

(3) Find the rank of the matrix
$$\begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}$$

where a, d, f are nonzero, and b, c, e are arbitrary numbers

2. If the rank of a 4×4 matrix A is 4 and the rank of a 5×3 matrix B is 3, what is the reduces row echelon form of A and B?(rref(A) =?, rref(B) =?)

Homework

3.
$$let \vec{x} = \begin{bmatrix} 5 \\ 3 \\ -9 \end{bmatrix} and \vec{y} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

- (a) Find a diagonal matrix A such that $A\vec{x} = \vec{y}$.
- (b) Find a matrix A of rank 1 such that $A\vec{x} = \vec{y}$.
- (c) Find an *upper triangular* matrix A such that $A\vec{x} = \vec{y}$, unique solution. What can you satisfies where all the entries of A on and above the diagonal are solutions of the system $A\vec{x} = \vec{c}$? nonzero.
- (d) Find a matrix A with all nonzero entries such that $A\vec{x} = \vec{y}$.

- 4.(a) Consider a linear system of three equations with three unknowns. We are told that the system has a unique solution. What does the reduced row-echelon form of the coefficient matrix of this system look like? Explain your answer.
 - (b) Let A be a 4×4 matrix, and let \vec{b} and \vec{c} be two vectors in \mathbb{R}^4 . We are told that the system $A\vec{x} = \vec{b}$ has a unique solution. What can you say about the number of solutions of the system $A\vec{x} = \vec{c}$?
 - (C) Let A be a 4×3 matrix, and let \vec{b} and \vec{c} be two vectors in \mathbb{R}^4 . We are told that the system $A\vec{x} = \vec{b}$ has a \vec{y} , unique solution. What can you say about the number of are solutions of the system $A\vec{x} = \vec{c}$?
- 5.(a) Consider an $n \times m$ matrix A of rank n. Show that there exists an $m \times n$ matrix X such that $AX = I_n$. If n < m, how many such matrices X are there?
 - (b) Consider an $n \times n$ matrix A of rank n. How many $n \times n$ matrices X are there such that $AX = I_n$?

Homework(Optional)

1. A linear system of the form

$$A\vec{x} = \vec{0}$$

is called homogeneous. Justify the following facts:

- **a.** All homogeneous systems are consistent.
- **b.** A homogeneous system with fewer equations than unknowns has infinitely many solutions.
- **c.** If \vec{x}_1 and \vec{x}_2 are solutions of the homogeneous system $A\vec{x} = \vec{0}$, then $\vec{x}_1 + \vec{x}_2$ is a solution as well.
- **d.** If \vec{x} is a solution of the homogeneous system $A\vec{x} = \vec{0}$ and k is an arbitrary constant, then $k\vec{x}$ is a solution as well.

- 2 Consider a solution \vec{x}_1 of the linear system $A\vec{x} = \vec{b}$. Justify the facts stated in parts (a) and (b):
 - **a.** If \vec{x}_h is a solution of the system $A\vec{x} = \vec{0}$, then $\vec{x}_1 + \vec{x}_h$ is a solution of the system $A\vec{x} = \vec{b}$.
 - **b.** If \vec{x}_2 is another solution of the system $A\vec{x} = \vec{b}$, then $\vec{x}_2 \vec{x}_1$ is a solution of the system $A\vec{x} = \vec{0}$.
 - c. Now suppose A is a 2×2 matrix. A solution vector \vec{x}_1 of the system $A\vec{x} = \vec{b}$ is shown in the accompanying figure. We are told that the solutions of the system $A\vec{x} = \vec{0}$ form the line shown in the sketch. Draw the line consisting of all solutions of the system $A\vec{x} = \vec{b}$.
- 3. 方阵A被称为幂零矩阵,如果存在正整数k 使得 $A^k = 0$; 使 $A^k = 0$ 成立的最小正整数k被称为A的幂零指数。证明或证否
 - (1) 上(下)三角矩阵是幂零矩阵当且仅当它的主对角元全为0
 - (2) 如果n级上(下)三角矩阵是幂零矩阵,那么它的幂零指数 $k \le n$.
 - (3) 若方阵A的任一正整数幂 A^k 的主对角线元素之和为0,则A是幂零矩阵.