作业 0915

返回 目录

此页面提供 作业 0915 有关资料。

此作业的试题 PDF 提供于以下 链接

答案见下。

9/15 作业

  1. 3×73\times7 .

  2. (1) (35649)\begin{pmatrix}35\\ 6\\ 49\end{pmatrix} .

    (2) 02×2\mathbf 0_{2\times2} .

    (3) 1010 .

    (4) (241236)\begin{pmatrix}\mathop{-}2 & 4\\ \mathop{-}1 & 2\\ \mathop{-}3 & 6\end{pmatrix} .

    (5) (6782056)\begin{pmatrix}6 & \mathop{-}7 & 8\\ 20 & \mathop{-}5 & \mathop{-}6\end{pmatrix} .

    (6) (1252012400430009)\begin{pmatrix}1 & 2 & 5 & 2\\ 0 & 1 & 2 & \mathop{-}4\\ 0 & 0 & \mathop{-}4 & 3\\ 0 & 0 & 0 & \mathop{-}9\end{pmatrix} .

    (7) hh .

  3. (1) A=(12323212)=(cosθsinθsinθcosθ)A=\left( \begin{matrix} -\frac{1}{2} & -\frac{\sqrt 3}{2} \\ \frac{\sqrt 3}{2} & -\frac{1}{2} \end{matrix} \right)=\left( \begin{matrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{matrix} \right) , where θ=2π3\theta=\frac{2\pi}{3} .

    AA is rotation matrix by 2π3\frac{2\pi}{3} . A2025A^{2025} is rotation by 2π32005=4010π32π3\frac{2\pi}{3} \cdot 2005 = \frac{4010\pi}{3} \cong \frac{2\pi}{3} .

    A2025=A=(12323212)A^{2025}=A=\left( \begin{matrix} -\frac{1}{2} & -\frac{\sqrt 3}{2} \\ \frac{\sqrt 3}{2} & -\frac{1}{2} \end{matrix} \right) .

    (2) (1na01)\begin{pmatrix}1 & na\\ 0 & 1\end{pmatrix} .

  4. {5}\left\{ 5 \right\} .

  5. (1) {(xyyx)|x,yR}\left\{ \begin{pmatrix}x & y\\ y & x\end{pmatrix} \middle| x,y \in \R \right\} .

    (2) All 3×33\times3 diagonals.

  6. (1) {(ab2a212b3a+533b23)|a,bR}\left\{ \begin{pmatrix}a & b\\ -2a-2 & 1-2 b\\ \frac{3 a+5}{3} & \frac{3 b-2}{3}\end{pmatrix} \middle| a,b \in \R \right\} .

    (2) (10.101)\begin{pmatrix}1 & 0.1\\ 0 & 1\end{pmatrix} .

  7. {(x,y,z)R3z=x+3y}\left\{ (x,y,z) \in \R^3 | z=x+3y \right\} .

    Plot.

    plot

  8. {(w,6w,9w,4w)wR}\left\{ (w,-6w,9w,-4w) | w\in \R \right\} .

  9. {(2,3,4)}\left\{ (2,3,-4) \right\} .

Above Rendered from Markdown