148 words
1 minute
Distribution Cheetsheet
2024-10-14
No Tags

分布#

分布是一个高阶函数。

  • 二项分布:B:ZR(ZR)=(n,p)x(nx)px(1p)nxB:\Z\Rightarrow\R\Rightarrow(\Z\Rightarrow\R)=(n,p)\mapsto x\mapsto{n\choose x}p^x(1-p)^{n-x} ;

  • 超几何分布:H:ZZZ(ZR)=(n,K,N)x(Kx)(NKnx)(Nn)H:\Z\Rightarrow\Z\Rightarrow\Z\Rightarrow(\Z\Rightarrow\R)=(n,K,N)\mapsto x\mapsto\frac{{K\choose x}{N-K\choose n-x}}{N\choose n} ;

  • 正态分布:N:RR(RR)=(μ,σ)x1σ2πexp((xμ)22σ2)N:\R\Rightarrow\R\Rightarrow(\R\Rightarrow\R)=(\mu,\sigma)\mapsto x\mapsto\frac{1}{\sigma\sqrt{2\pi}}\exp(-\frac{(x-\mu)^2}{2\sigma^2}) .

期望#

E:(DomR)R=fxDomxf(x)dx{\rm E}:({\rm Dom}\Rightarrow\R)\Rightarrow\R=f\mapsto x\mapsto\int_{\rm Dom}xf(x){\rm d}x

E(lf)=lE(f){\rm E}(l\circ f)=l\circ{\rm E}(f) 对于线性映射 ll .

E(xf(x)g(x))=E(f)E(g){\rm E}(x\mapsto f(x)g(x))=E(f)E(g)ffgg 无关。

方差#

D:(DomR)R=fxDom(xE(f))2dx=fE((xx2)f)E(f)2\begin{align*} {\rm D}&:({\rm Dom}\Rightarrow\R)\Rightarrow\R\newline &=f\mapsto x\mapsto \int_{\rm Dom}(x-{\rm E}(f))^2{\rm d}x\newline &=f\mapsto {\rm E}((x\mapsto x^2)\circ f)-{\rm E}(f)^2 \end{align*}

D((xx+a)f)=D(f){\rm D}((x\mapsto x+a)\circ f)={\rm D}(f) .

D((xax)f)=a2D(f){\rm D}((x\mapsto ax)\circ f)=a^2{\rm D}(f) .

协方差#

cov:(RR)(RR)R=(f,g)E(x(f(x)E(f))(g(x)E(g)))=E(xf(x)g(x))E(f)E(g)\begin{align*} {\rm cov}&:(\R\Rightarrow\R)\Rightarrow(\R\Rightarrow\R)\Rightarrow\R\newline &=(f,g)\mapsto{\rm E}(x\mapsto(f(x)-{\rm E}(f))(g(x)-{\rm E}(g)))\newline &={\rm E}(x\mapsto f(x)g(x))-{\rm E}(f){\rm E}(g) \end{align*}

cov(f,f)=D(f){\rm cov}(f,f)={\rm D}(f) .

cov(f,g)=cov(g,f){\rm cov}(f,g)={\rm cov}(g,f) .

cov((xax)f,(xbx)g)=abcov(f,g){\rm cov}((x\mapsto ax)\circ f,(x\mapsto bx)\circ g)=ab{\rm cov}(f,g) .

常用公式#

E(B(n,p))=np{\rm E}(B(n,p))=np .

D(B(n,p))=np(1p){\rm D}(B(n,p))=np(1-p) .

E(H(n,K,N))=KnN{\rm E}(H(n,K,N))=\frac{Kn}N .

D(H(n,K,N))=n(Nn)K(NK)N2(N1){\rm D}(H(n,K,N))=\frac{n(N-n)K(N-K)}{N^2(N-1)} .

D(xaf(x)+bg(x))=a2D(f)+b2D(g)+2abcov(f,g){\rm D}(x\mapsto af(x)+bg(x))=a^2{\rm D}(f)+b^2{\rm D}(g)+2ab{\rm cov}(f,g) .

D(nfn)=i=0nD(fi)+2j=0icov(fi,fj){\rm D}(\sum_nf_n)=\sum_{i=0}^n{\rm D}(f_i)+2\sum_{j=0}^i{\rm cov}(f_i,f_j) .

cov(nfn,mgm)=nmcov(fn,gm){\rm cov}(\sum_nf_n,\sum_mg_m)=\sum_n\sum_m{\rm cov}(f_n,g_m) .

Distribution Cheetsheet
https://misaka10987.github.io/posts/migrate/old/202410/distr-cheetsheet/
Author
misaka10987
Published at
2024-10-14
License
CC BY-NC-SA 4.0